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Abstract

Sex determination was a founding topic of C. elegans research. After three decades of research, a
complex signal transduction pathway with multiple layers of regulation has been elucidated. This pathway
links karyotype to phenotype by coordinating the development of sexually dimorphic tissues. In this article,
this pathway is placed in two broader contexts. The first is that of nematodes and animals in general. The
important role of C. elegans studies in revealing the first universally conserved component of metazoan sex
determination is discussed, as is the role of cooption of genes into the sex determination and dosage
compensation pathways. The second context is that of a subset of more closely related species, with emphasis
on other members of the genus Caenorhabditis. Studies reviewed here have determined the gene-level
conservation of the known pathway and the relative rates of molecular evolution in conserved components,
and made substantial progress in the manipulation of gene activity in non-elegans species. Special attention is
paid to the origins of hermaphroditism, which evolved from gonochorism through germline-specific changes
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in sex determination. Recent studies suggest that the most rapidly evolving aspects of sex determination are
germline functions related to evolutionary shifts in mating systems, while somatic sex determination is
relatively conservative. From all of these studies, a picture emerges in which C. elegans utilizes an intriguing
mixture of general and species-specific genes and regulatory mechanisms.
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1. Introduction

Sex determination was one of the first aspects of C. elegans biology to be systematically characterized with
genetic analysis (Hodgkin and Brenner, 1977), and the depth of this analysis has made it a major topic in
developmental biology. It is both fair and interesting to ask how general the C. elegans model is likely to be, both
for other nematodes as well as for animals in general. As nematodes employ many different reproductive strategies,
often related to parasitic life histories (Anderson, 2000; Chitwood and Chitwood, 1950), one might expect similarly
variable sex determination mechanisms. However, comparative studies of sex determination based on the C. elgans
model have revealed both rapidly evolving and surprisingly well conserved features. This mixture of old and new
(or slow and fast), along with its obvious relevance to evolution, ecology, and applied fields like agricultural and
medical parasitology, has made the evolution of nematode sex determination an increasingly active research area.

2. Genetic and environmental sex determination in nematodes

In 1949, Nigon demonstrated that C. elegans used an XX/XO sex chromosome system, and the importance of
the X:autosome ratio was clarified by Madl & Herman (1979). The XX/XO system is widespread across the
Nematoda, and may be ancestral (Bull, 1981; Bull, 1983). However, some groups have apparently abandoned
genetic sex determination (GSD) in favor of environmental sex determination (ESD).

The best characterized example of nematode ESD is in the arthropod parasitic Mermithidae. In lightly infected
hosts, exclusively female worms are born, while in heavily parasitized hosts only males are produced. At
intermediate parasite densities mixed populations are produced (Christie, 1929; Harlos et al., 1980). Culture of
mermithids in axenic liquid culture also produces only females, suggesting that the concentration of a limiting host
factor may be an important cue for male development (Petersen, 1985). Whether the environmental factors that
dictate sex impinge upon a signal transduction pathway resembling that mediating C elegans sex determination is
unknown, but just such a connection between nutrition and sex determination has recently been found in C. elegans
itself (Prahlad et al., 2003). Among the small number of nematode fossil specimens that exist are mermithids
emerging from their insect hosts, preserved in 40 million year old Baltic amber (Poinar, 2002). Their striking
similarity to extant insect-parasitic species (Figure 1) suggests a minimum age for the origin of ESD in this group,
although it is possible that ancient mermithids used GSD.

ESD also occurs in the vertebrate parasite Strongyloides, which like C. elegans is in the order Rhabditida. As
with most parasitic nematodes, a dauer-like alternative L3 form serves as the infective stage. Once inside a host,
infective worms all mature as females and reproduce by mitotic parthenogenesis (Anderson, 2000). Parthenogenetic
progeny that remain in the host develop into apomictic females, like their mothers. However, when L1 larvae are
passed from the host in feces, they can either develop into infective L3 female larvae (the homogonic path) or
initiate a free-living male/female generation (the heterogonic phase) that is similar to Caenorhabditis. Heterogonic
development produces males and females from genetically identical L1 larvae, indicating that sex is either
stochastically or environmentally determined. This again resembles the sexual plasticity of C. elegans larvae
recently described by Prahlad et al. (2003), in which a chemical cue induces specific loss of the paternal X
chromosome in L1 larvae. It would be interesting to see if these phenomena share a common mechanism.
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Figure 1. Ancient and extant mermithid nematodes emerging from their insect hosts. A. Juvenile worm of the genus Heydenius emerging from a
winged male ant of the genus Prenolepis. The specimen is preserved in Baltic amber approximately 40 million years old. The scale bar represents 1.2 mm.
Photograph reproduced from Poinar (2002) with permission from the author and Cambridge Univ. Press. B. Juvenile mermithid emerging from an extant
mosquito larva. Photo used with permission of the Univ. of Nebraska, Lincoln Dept. of Entomology.

Commitment to heterogonic development in Strongyloides requires amphid neurons homologous to those that
govern dauer formation in C. elegans (Ashton et al., 1998), indicating that the alternate reproductive modes are also
environmentally controlled. Males are required for female fertility in the heterogonic phase, but apparently the male
sperm serves only to activate embryogenesis. Diploidy is thought to be maintained by fusion of the post-meiotic
oocyte pronucleus with an oogenic polar body (Anderson, 2000). The heterogonic phase is therefore pseudo-sexual,
and presumably evolved from a truly sexual ancestor. Given that parasites often rely on genetic diversity for
successful host invasion, this represents an unusual case that deserves further investigation.

3. Deep conservation and cooption in the evolution of nematode sex
determination

Although C. elegans, Drosophila, and mammals (the three most-studied systems) all use GSD, the signal
transduction pathways that convert the genetic difference between sex into dimorphic fates are not at all similar
(Cline and Meyer, 1996). However, recently a conserved component has been discovered: the Doublesex/mab-3
(DM) family of transcriptional regulators (Figure 2, Raymond et al., 1998; Yi and Zarkower, 1999). Although mab-3
functions in specifying a limited number of male cell fates in C. elegans, the role of Dsx in Drosophila and of DM
proteins in some vertebrates (Matsuda et al., 2002) indicate they can function more globally. The association of DM
family member expression with sexual development in cnidarians (Miller et al., 2003) further suggests that this role
evolved prior to the Cambrian, over 500 million years ago. It is reasonable to imagine that the first metazoans had
sexual differentiation controlled in part by a DM progenitor, and that the diversity of extant sex determination
mechanisms represents extreme divergence in different lineages. In this sense, then, sex determination itself is a
homologous developmental process, even though the genes that control it are in most cases not themselves
homologous.

How did the nematode system evolve? One interesting possibility is that much of it represents a highly
modified form of the hedgehog (hh) pathway. hh signaling controls many key patterning and cell fate decisions in
metazoan development, but is conspicuously absent from C. elegans, as judged by the lack of bona fide hh and
smoothened homologs in the genome. However, the TRA-2 transmembrane receptor is topologically similar to
patched, and the pathway culminates in the regulation of a Cubitus interruptus/Gli-like transcription factor, TRA-1.
Perhaps in the distant past, as nematode development became more mosaic and increasingly dependent upon cell
lineage, hh signaling became dispensable for other aspects of development and was coopted into sex determination.
Given the unusually high rates of sequence evolution exhibited by many sex determination genes, it is plausible that
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some “novel” proteins in the pathway may have at one time been recognizably similar to other hh-related homologs.
The isolation of her-1 (Streit et al., 1999) and tra-1 (Pires-daSilva and Sommer, 2004) homologs from Brugia
malayi (from the order Spirurida) and Pristionchus pacificus (Rhabditida, Neodiplogasteridae), respectively,
suggests that this putative cooption happened early in the diversification of nematodes. In the case of Ppa-tra-1,
multiple mutant alleles provide conclusive proof of a conserved female-promoting role.

Figure 2. Variation in model system sex determination. Though mammals, Drosophila, and C. elegans all use GSD, they interpret their sex
chromosome content through distinct signal transduction pathways. However, all three eventually converge on a DM family member whose expression is
associated with male development. Drosophila Dsx is unusual for DM genes in also having an important role in female development (through a
female-specific splice variant).

There are two other likely cases of cooption of genes into Caenorhabditis sex determination, enabled through
pleiotropic function of a single gene or the divergence of gene duplicates. First, the recent structural characterization
of XOL-1 suggests that it is related to small molecule metabolic kinases (Luz et al., 2003). Whether XOL-1 actually
acts as an enzyme is not yet clear, but the fact that it is the least conserved protein in the entire sex determination
pathway suggests it may not. The other case is comprised of the dosage compensation complex genes. The products
of mix-1, dpy-26, dpy-27, and dpy-28 are clearly related to the 13S condensin complex that mediates chromatin
condensation in vertebrates (Meyer, 2000). MIX-1 has been shown to play a direct role in both processes (Hagstrom
et al., 2002), while dpy-26, dpy-27 and dpy-28 are replaced in cell division by products of the paralogs C29E4.2
(Hagstrom and Meyer, pers. comm.), smc-4 (Hagstrom et al., 2002), and hcp-6 (Chan et al., 2004), respectively.

In 1995, Wilkins proposed that the many layers of negative regulation found in nematode and Drosophila sex
determination represent the accumulation of successive upstream repressors, the so-called “bottom up” hypothesis”.
The conservation of tra-1 as a key female-promoting gene beyond the family Rhabditidae is consistent with this
idea. However, if the signal transduction pathway used in Caenorhabditis sex determination is a diverged form of
the hedgehog pathway, then one might predict that the entire “cassette” from her-1 to tra-1 came into the pathway at
once, and thus will not be found in partial form in any species.

A more general test of the bottom-up idea will require examination of the more upstream components of the
pathway, such as the X chromosome counting factors fox-1 and sex-1, in both close and distant relatives of C.
elegans. Although the XX/XO system seems to be widespread across the Nematoda, this does not mean that X
dosage is measured by homologous genes in all species. Although clear C. briggsae fox-1 and sex-1 homologs exist,
their functions remain untested. As of early 2005 an effort to sequence the Pristionchus pacificus genome is
underway, which should soon enable a search for these genes (or their equivalents) in a second nematode family.
Recently, Hodgkin (2002) demonstrated that C. elegans can be manipulated genetically such that any of the core
sex-determining genes (all autosomal), an extrachromosomal array, temperature, or even a suppressor tRNA locus
can substitute for the X:A ratio as the primary determinant of sex. This impressive feat suggests that nature also has
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a large number of options at its disposal for optimization of reproductive strategy. It will be of great interest to see to
what extent these options have, in fact, been used during nematode evolution.

4. Conservation of C. elegans pathway components: C. briggsae as the ruler

Homologs of C. elegans sex determination genes have been isolated from several Caenorhabditis species,
including the undescribed male/female species CB5161 (Stothard et al., 2002), the male/female C. remanei (Chen et
al., 2001; Haag and Kimble, 2000; Haag et al., 2002), and the non-rhabditids Pristionchus pacificus (Pires-daSilva
and Sommer, 2004) and Brugia malayi (Streit et al., 1999). However, the nearly complete genome sequence
assembly of C. briggsae (Stein et al., 2003) makes it uniquely suited to assess molecular conservation across the
entire C. elegans pathway. The focus below is therefore on C. briggsae, but we shall return to the results of
functional studies in the other species in a later section.

Nearly all C.elegans sex determination genes have clear C. briggsae orthologs, as judged by genomic synteny,
reciprocal best BLAST scores, and in a few cases comprehensive phylogenies (Nayak et al., 2005; Stothard et al.,
2002). Table 1 shows the amino acid conservation between these C. elegans and C. briggsae homologs. Most, but
not all, of these genes show greater divergence than the genome-wide median conservation of 80% (Stein et al.,
2003). Little correlation exists between where a gene acts in the pathway and its sequence conservation. One trend,
however, seems to be higher conservation in proteins that are demonstrably or likely to be pleiotropic. For example,
mag-1, mog-1, mog-4, and mog-5 all encode key pre-mRNA splicing factors (Belfiore et al., 2004; Li et al., 2000;
Puoti and Kimble, 1999; Puoti and Kimble, 2000), and are extremely well conserved. Similarly, the RNA-binding
GLD-1 has roles in both sex determination (Jan et al., 1999; Jones et al., 1996; Jones and Schedl, 1995a) and the
mitosis-meiosis decision (Crittenden et al., 2002; Francis et al., 1995; Hansen et al., 2004; Kadyk and Kimble, 1998)
in the C. elegans germ line.

Table 1. C. elegans-C. briggsae sex determination protein sequence conservation

Gene Role in sex determination pathway Protein family or motifs Amino acid identity

sex-1 X dosage counting element
(female-promoting)

Zn-finger TF, nuclear hormone
receptor (Carmi et al., 1998)

44% B

fox-1 X dosage counting element
(female-promoting)

RRM (Hodgkin et al., 1994) 87% B

xol-1 integrator of X and autosomal dosage
(male-promoting)

GHMP kinase-related (Luz et al.,
2003)

22% (Luz et al.,
2003)

sdc-1 X dosage compensation complex
component, her-1 transcriptional
repressor (female-promoting)

Zn-finger TF (Nonet and Meyer,
1991)

39% B

sdc-2 X dosage compensation complex
component, her-1 transcriptional
repressor (female-promoting)

novel, with coiled-coil (Dawes et
al., 1999)

32% B

sdc-3 (aka
dpy-29)

X dosage compensation complex
component, her-1 transcriptional
repressor (female-promoting)

Zn-fingers, myosin-like ATPase
(Klein and Meyer, 1993)

28% G

her-1 secreted signal coordinating gender
(male-promoting)

novel, signal peptide (Hamaoka et
al., 2004; Perry et al., 1993)

57% (Streit et al.,
1999)

tra-2 receptor for HER-1, repressor of fem
genes (female-promoting)

7-pass integral membrane protein
(Kuwabara and Kimble, 1995)

43% (Kuwabara,
1996)

tra-3 positive regulator of TRA-2 processing
(female promoting)

calpain-related protease (Barnes and
Hodgkin, 1996)

91% B

laf-1 somatic repressor of tra-2 translation
(male-promoting)

noncoding RNA (Goodwin, pers.
comm.)

N/A

gld-1 germline translational repressor of tra-2
(male-promoting)

KH RNA-binding protein (Jones
and Schedl, 1995b)

83% B
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Gene Role in sex determination pathway Protein family or motifs Amino acid identity

fog-2 germline cofactor of GLD-1, repressor of
tra-2 translation (male-promoting)

F-box (Clifford et al., 2000) No clear ortholog

mag-1 germline repressor of male-promoting
genes (female-promoting)

magoH/mago nashi exon junction
complex (Li et al., 2000)

97% G

fem-1 cytoplasmic responder to TRA-2 activity
(male-promoting)

ankyrin repeats (Spence et al., 1990) 72% B

fem-2 cytoplasmic responder to TRA-2 activity
(male-promoting)

protein phosphatase 2C (Pilgrim et
al., 1995)

63% (Hansen and
Pilgrim, 1998)

fem-3 cytoplasmic responder to TRA-2 activity
(male-promoting)

novel 38% (Haag et al.,
2002)

fbf-1,2 germline translational repressors of fem-3
(female-promoting)

Puf family RNA-binding protein
(Zhang et al., 1997)

No clear ortholog

nos-3 germline cofactor of FBF-1/2, repressor
of fem-3 translation (female-promoting)

nanos-related RNA-binding domain 51% B

mog-1 global repressor of fem-3 translation
(female-promoting)

DEAH RNA helicase (Puoti and
Kimble, 1999)

92% B

mog-4 global repressor of fem-3 translation
(female-promoting)

DEAH RNA helicase (Puoti and
Kimble, 2000)

90% B

mog-5 global repressor of fem-3 translation
(female-promoting)

DEAH RNA helicase (Puoti and
Kimble, 2000)

92% B

mog-6 (aka
cyp-4)

global repressor of fem-3 translation
(female-promoting)

divergent cyclophilin (Belfiore et
al., 2004)

92% B

tra-1 global regulator of sex-specific
transcription (female-promoting)

Zn-finger TF (Zarkower and
Hodgkin, 1992)

44% (de Bono and
Hodgkin, 1996)

fog-1 promoter of spermatogenesis
(male-promoting)

CPEB (Jin et al., 2001; Luitjens et
al., 2000)

60% G

fog-3 promoter of spermatogenesis
(male-promoting)

TOB family (Chen et al., 2000) 56% (Chen et al.,
2001)

mab-3 regulator of male tail and neuron
development (male-promoting)

DM domain (Raymond et al., 1998) 67% G

Genes are arranged by where they act in the pathway, with sex chromosome counting elements at the top and
tissue-specific targets of TRA-1 at the bottom. Percent identities are based on published figures when available, on
BLAST 2.0 alignments of predicted genes from WormBase when alignable over at least 90% of their full length
(B), or on whole alignments using the Needleman & Wunsch algorithm as implemented in the Gap program of the
GCG Wisconsin Package (G). Genes that have not yet been cloned, or whose products are involved in dosage
compensation but not sex determination, are omitted here for simplicity. The median amino acid identity across the
entire set of C. elegans-C. briggsae orthologs is 80% (Stein and others, 2003). P, based on partial sequence; TF,
transcription factor; RRM, RNA recognition motif.

Even well-conserved proteins can rapidly change their role (or lack thereof) in sex determination, as has been
found in dipteran insects (reviewed by Graham et al., 2003). Evidence for similar change in nematodes is discussed
below. In contrast, some proteins exhibiting rapid sequence change participate in conserved protein-protein
interactions with a consistent role in sex determination. For example, the TRA-1/TRA-2c interaction is conserved in
C. briggsae, and this interaction is species-specific (Wang and Kimble, 2001). A more extreme case of molecular
coevolution exists between TRA-2c and FEM-3. The FEM-3 binding domain of TRA-2c is conspicuously
hyperdivergent (Haag and Kimble, 2000; Kuwabara, 1996), yet mediates a strong but species-specific interaction
with the similarly divergent FEM-3 in C. elegans, C. briggsae, and C. remanei (Haag et al., 2002). Why and how
crucial protein-protein interactions mediating sex determination are continually reinvented at the primary sequence
level are interesting questions that will require the integration of structural biology, genetics, and ecology to be fully
answered.
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5. Two cases of species-specific genes

Though most C. elegans sex determination genes have a single C. briggsae ortholog, there are two exceptions.
fog-2 is clearly the result of a recent, elegans-specific tandem duplication (Clifford et al., 2000). FOG-2 differs little
from the protein encoded by its nearest neighbor and most similar paralog, FTR-1, over its N-terminal 80%, but has
a distinct C-terminus. This divergent region is necessary and sufficient for GLD-1 binding, and may be derived from
the ancestral domain in part via a frame-shift mutation (Nayak et al., 2005). fog-2 likely reveals the footprints of a
key event in the evolution of hermaphroditism in the C. elegans lineage. This will be discussed at greater length
below.

The second example of species-specific sex determination genes is that of fbf-1 and fbf-2. These two Puf
family genes are also the product of a recent tandem duplication, and encode proteins that are 91% identical (Zhang
et al., 1997). Three C. briggsae genes, themselves products of recent lineage-specific duplication events, are more
closely related to the fbfs than to any other C. briggsae family members (Lamont et al., 2004, A. Doty, unpublished
data). However, the expectation that any of these three C. briggsae genes perform the function of fbf in repressing
fem-3 is complicated by the lack of Cb-fem-3(RNAi) germline feminization (Haag et al., 2002). It may be that these
fbf-related C. briggsae Puf proteins regulate Cb-fem-3, but only in the soma, or have other targets entirely.

6. Comparative functional studies

Several labs have investigated the function of homologs of C. elegans sex determination genes. An early study
on C. briggsae tra-1 (de Bono and Hodgkin, 1996) employed partial rescue of C. elegans mutants to demonstrate
conservation of function. However, the discovery of RNAi has had a profound impact. Kuwabara (1996) first
showed the efficacy of RNAi in a non-elegans species, against Cb-tra-2. Although rescue assays have continued to
be used (Chen et al., 2001; Hansen and Pilgrim, 1998), the phenomenon of interspecies protein-protein
incompatibility discussed above makes partial or failed interspecies rescue uninformative. Unfortunately, RNAi has
its own problems, the chief being its frequently lower effectiveness in C. briggsae and C. remanei than in C. elegans
(Haag and Kimble, 2000; Haag et al., 2002; Kuwabara, 1996, M. Montgomery, pers. comm.). For this reason,
several laboratories have begun forward and reverse genetic screens for true sex determination mutations in C.
briggsae (D. Pilgrim, E. Haag, and R. Ellis, unpublished data). In Pristionchus pacificus, both morpholino
oligonucleotides and forward mutagenesis screens have recently been employed with success (Pires-daSilva and
Sommer, 2004).

Despite these technical difficulties, sex determination function has already been demonstrated for numerous
orthologs of key C. elegans genes. Cb-her-1 is required for normal male development, and its overexpression clearly
masculinizes XX C. elegans animals. Overexpression of her-1 from the filarial parasite Brugia malayi was less
successful (Streit et al., 1999). tra-2 has conserved roles in both the soma and germ line of C. briggsae (Kuwabara,
1996) and C. remanei (Haag and Kimble, 2000), and in vitro and in vivo evidence exists for its translational
repression in these species (Haag and Kimble, 2000; Jan et al., 1997). Similarly, tra-1 performs a key
female-promoting role in other species, both across Caenorhabditis (de Bono and Hodgkin, 1996) and in the
neodiplogasterid Pristionchus pacificus (Pires-daSilva and Sommer, 2004).

The fem genes of non-elegans Caenorhabditis species have also been studied, with more surprising results.
Although fem-1, fem-2, and fem-3 perform conserved roles in somatic sex determination, RNAi data (Haag et al.,
2002; Stothard et al., 2002) and two mutations (Hill et al., unpublished data) indicate that they are dispensable for
hermaphrodite spermatogenesis in C. briggsae. In addition, fem-1 (A. Spence, pers. comm.) and fem-3 (Haag et al.,
2002) are probably not required for at least some male spermatogenesis. Despite these differences, however, the
germline-specific fog-1 and fog-3 have conserved roles in promoting spermatogenesis (Chen et al., 2001). The
potential significance of these results is discussed further below.

7. Mating system evolution in Caenorhabditis

From a phylogenetic perspective, C. elegans is rather unusual in having a hermaphrodite sex. Its combination
with males, termed androdioecy, is found in animals only in other nematodes and some crustaceans (Sassaman,
1995; Sassaman and Weeks, 1993). With the exception of C. briggsae, the remaining Caenorhabditis species are all
gonochoristic (male/female). That hermaphroditic Caenorhabditis are derived from gonochoristic ancestors has been
accepted for many years (Honda, 1925), as has the independent origin of selfing in distantly related species (Fitch,
2002). However, recent phylogenies suggest that even C. elegans and C. briggsae acquired their shared
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hermaphroditism via parallel evolution (Cho et al., 2004; Kiontke et al., 2004). An independent origin of bisexual
germline development may help explain discrepancies in germline gene function that have begun to emerge from
comparative functional studies.

In C. elegans, the core somatic pathway is also required for normal germline sex determination, although its
regulation differs from the soma in some details (Figure 3A). First, a direct TRA-1/TRA-2c interaction (Lum et al.,
2000; Wang and Kimble, 2001) is required for reliable hermaphrodite spermatogenesis. Lum et al. (2000) suggested
that this interaction, while generally female-promoting, is a necessary prerequisite for full repression of tra-2 that
allows initiation of hermaphrodite spermatogenesis. Second, the fem genes positively regulate spermatogenesis
(Hodgkin, 1986) and germline-specific fog-3 transcription (Chen and Ellis, 2000) in the absence of tra-1. Finally,
tra-1 loss-of-function mutants cannot sustain spermatogenesis, a phenotype at odds with their complete somatic
masculinization (Schedl et al., 1989). This long-puzzling result may stem from both positive and negative regulation
of fog-3 by TRA-1 (Chen and Ellis, 2000).

Figure 3. Models for germline sex determination in C. elegans and C. briggsae. (A) C. elegans, and (B) C. briggsae. In both panels, arrows indicate
positive regulation, and crossbars indicate repressive regulation. With the exception of fog-3, the genes in black type are also crucial in somatic sex
determination. Mechanisms promoting the initiation of hermaphrodite spermatogenesis are colored green, and those promoting the switch to oogenesis are
colored red. Though it is likely that C. briggsae hermaphroditism is controlled by genes regulating the core pathway downstream of the Cb-fems, their
identity is unknown. See text for full explanation.

Numerous studies have investigated the germline-specific regulation that enables hermaphrodite germ cells to
change sex during development (Figure 3A). Translational repression of tra-2 by the GLD-1/FOG-2 complex
(Clifford et al., 2000; Goodwin et al., 1993; Jan et al., 1999) is thought to be the major factor allowing
hermaphrodite spermatogenesis to start (“sperm on”). The switch to oogenesis depends crucially upon translational
repression of fem-3 by the FBF/NOS-3 complex (Ahringer and Kimble, 1991; Ahringer et al., 1992; Gallegos et al.,
1998; Kraemer et al., 1999; Zhang et al., 1997).
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How much of the regulation described above is used by C. briggsae hermaphrodites? There is evidence that
the repression of tra-2 by a GLD-1-like factor (Jan et al., 1999) and a TRA-1/TRA-2c direct interaction (Wang and
Kimble, 2001) both occur. This is consistent with a central role for tra-2 regulation in the initiation of C. briggsae
hermaphrodite spermatogenesis (Figure 3B). However, fog-2, a key cofactor of GLD-1, is unique to C. elegans (see
above). In addition, RNAi directed against the C. briggsae gld-1 ortholog causes highly penetrant germline
masculinization, not the feminization expected from C. elegans (Nayak et al., 2005). As discussed by Nayak et al.
(2005), these latter results suggest several alternative possibilities. One is that Cb-GLD-1 does not translationally
repress Cb-tra-2, or that it does but also has other, male-promoting targets that are more important. Alternatively,
fog-2 may qualitatively modify the function of Ce-GLD-1 in a conserved GLD-1/tra-2 interaction. It is still possible,
however, that the unexpected Cb-gld-1(RNAi) phenotype is due to incomplete inactivation of Cb-gld-1, as RNAi is
generally less effective in C. briggsae (Haag et al., 2002, M. Montgomery, pers. comm.). Mutations in Cb-gld-1 will
be required to clarify this matter.

In addition to the evolution of the “sperm on” portion of hermaphrodite germline development, evidence is
mounting that the “sperm off” component is also distinct. While the Cb-fem genes have conserved roles in male
somatic development, none have yet been shown to be required for hermaphrodite spermatogenesis (Haag et al.,
2002, A. Spence, pers. comm.; Stothard et al., 2002, Hill et al., unpublished data). Thus the “sperm off” function
must target other parts of the pathway, suggested here (Figure 3B) to be variously the TRA-1/TRA-2c interaction,
direct upregulation of tra-1, or repression of fog-3. fog-3 expression is tightly associated with sperm production in
both species, as well as in C. remanei (Chen et al., 2001). Surprisingly, Cb-fem-2 and Cb-fem-3 null XO mutants are
neither females (Fog), as would be the case in C. elegans, nor somatic females with spermatogenic germ lines
(Mog), as might be expected from the lack of phenotype in XX hermaphrodites. Instead, these XO mutants are also
hermaphrodites (the Her phenotype; Hill et al., unpublished data). This suggests that the Cb-fem genes are neither
required to initiate nor to curtail hermaphrodite spermatogenesis, but do act to repress the sperm-oocyte switch in
XO males. Overall, it is likely the entire control of hermaphrodite spermatogenesis lies downstream of the fem genes
in C. briggsae (Figure 3B).

The question of how hermaphrodites differ from their female ancestors has motivated much of the
comparative work on Caenorhabditis sex determination. C. briggsae and C. remanei represent the most closely
related gonochoristic/androdioecious species pair (Cho et al., 2004; Kiontke et al., 2004), and thus make an
especially informative comparative system for future research. More distantly related hermaphrodite species exist
that have convergently evolved selfing (Fitch, 2002). The availability of both closely related species with different
mating systems and multiple cases of parallel evolution of a complex trait makes soil nematodes an attractive system
for developmental studies of reproductive adaptation. Rapid developments in genome sequencing and the advent of
comparative genetics are making rigorous studies in these other species possible, and not only for sex determination.
However, given the intrinsic organismal importance and remarkably rapid evolution of sex determination, it is likely
that it will remain a major topic in nematode comparative biology for the foreseeable future.
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